Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 59: e22045, 2023. tab, graf
Article in English | LILACS | ID: biblio-1439519

ABSTRACT

Abstract The genus Candida represents the main cause of infections of fungal origin. Some species stand out as disease promoters in humans, such as C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis. This study evaluated the antifungal effects of propyl (E)-3-(furan-2-yl) acrylate. The minimum inhibitory concentration of the synthetic compound, amphotericin B and fluconazole alone against four species of Candida ranged from 64 to 512 µg/mL, 1 to 2 µg/mL, and 32 to 256 µg/mL, respectively. The synergistic effect of the test substance was observed when associated with fluconazole against C. glabrata, there was no antagonism between the substances against any of the tested strains. The potential drug promoted morphological changes in C. albicans, decreasing the amount of resistance, virulence, and reproduction structures, such as the formation of pseudohyphae, blastoconidia, and chlamydospores, ensuring the antifungal potential of this substance. It was also possible to identify the fungicidal profile of the test substance through the study of the growth kinetics of C. albicans. Finally, it was observed that the test compound inhibited the ergosterol biosynthesis by yeast


Subject(s)
Candida albicans/drug effects , Ergosterol/agonists , Antifungal Agents/analysis , Candida/classification , Pharmaceutical Preparations/analysis , Microbial Sensitivity Tests/instrumentation
2.
Braz. J. Pharm. Sci. (Online) ; 58: e20324, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420453

ABSTRACT

Abstract This study investigated the synergy testing of penicillin, cephalosporin, amphenicols, and aminoglycoside in the camel milk (n=768 samples), subsequently used for isolation of MDR S. aureus targeting mecA gene. Antibiotic susceptibility of S. aureus showed >90% isolates were sensitive to ciprofloxacin and trimethoprim and resistant against oxacillin, ampicillin, and cefoxitin. Further, 50-85% of the S. aureus were sensitive to gentamicin, oxytetracycline, and chloramphenicol and resistant against cefotaxime, vancomycin, and cefixime. Minimum inhibitory concentration (MIC) of cefotaxime, (C) and ampicillin (A) in combination with gentamicin (G) was reduced by 99.34% and 70.46%, respectively, while with chloramphenicol (Ch), reduction was 57.49% and 60%, respectively. In addition, the Fractional Inhibitory Concentration Index (FICI) of G+A, Ch+C and Ch+G combinations showed synergy against 80%, 60%, and 30% of MDR S. aureus, respectively. Similarly, C+A and Ch+G displayed indifferent interaction against 70 % and 30% of isolates, respectively, while the later showed additive interaction against 10% of MDR S. aureus. Altogether, our results described effective combination of gentamicin and chloramphenicol with ampicillin and cefotaxime to combat MDR S. aureus


Subject(s)
Penicillins/agonists , Staphylococcus aureus/pathogenicity , Chloramphenicol/agonists , Drug Synergism , Aminoglycosides/agonists , Camelus/classification , Microbial Sensitivity Tests/instrumentation , Genes, MDR , Milk/classification
3.
Braz. J. Pharm. Sci. (Online) ; 58: e20075, 2022. tab, graf
Article in English | LILACS | ID: biblio-1403710

ABSTRACT

Abatsract Pseudomonas aeruginosa is an important nosocomial pathogen and its clinical importance is mainly related to nosocomial infections. Increased rates of bacterial resistance in recent years has led WHO to publish a global priority list to guide research and discovery of new antibiotics, where P. aeruginosa is among the group of bacteria for which there is a critical level of priority for new drugs to be discovered. In this context, isoeugenol appears as an interesting alternative and the objective of this study was to investigate its action against P. aeruginosa. Isoeugenol presented significant antibacterial activity, with minimum inhibitory concentration (MIC) of 64µg/mL and minimum bactericidal concentration (MBC) of 128µg/mL, and was considered bactericidal against this species. Molecular docking revealed interactions that suggest that isoeugenol may bind to the enzyme Penicillin-Binding Protein 3 and interfere with the bacterial cell wall synthesis process. This study reinforces the antibacterial potential of this compound and emphasizes that more studies are needed in order to better investigate its mechanism of antibacterial action.


Subject(s)
Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/adverse effects , Bacteria/classification , World Health Organization , Microbial Sensitivity Tests/instrumentation , Penicillin-Binding Proteins/agonists , Reference Drugs , Molecular Docking Simulation/methods
4.
Braz. J. Pharm. Sci. (Online) ; 58: e19118, 2022. tab
Article in English | LILACS | ID: biblio-1374566

ABSTRACT

Abstract The chemically complex essential oils of Baccharis species are associated with several biological activities, such as antimicrobial and antiulcerous properties. However, few studies have investigated Baccharis erioclada DC. Therefore, in this study, we aimed to characterize the essential oil of B. erioclada and evaluate its antioxidant, antimicrobial, and hemolytic potential. The essential oil was extracted by hydrodistillation using a Clevenger apparatus and analyzed via gas chromatography-mass spectrometry (GC-MS). Phosphomolybdenum complex formation, reducing antioxidant power, and thiobarbituric acid reactive substances (TBARS) methods were used to determine antioxidant potential. To evaluate the essential oil's antimicrobial activity, minimum inhibitory concentrations (MIC) in Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were calculated. Hemolytic activity was determined in sheep red blood cells. Thirty-one compounds were identified via GC-MS analysis, representing 81.60% of the total essential oil. These compounds included: turmerone (27.97%), fokienol (13.47%), ledol (9.78%), and santalol (5.35%). The class of compounds identified was the oxygenated sesquiterpenes (62.52%). Antioxidant activity was confirmed via phosphomolybdenum complex formation and TBARS methods. Moderate antimicrobial activity and low hemolysis rates were displayed at concentrations of 250 and 500 µg/mL


Subject(s)
Oils, Volatile/analysis , Baccharis/anatomy & histology , Antioxidants/pharmacology , Microbial Sensitivity Tests/instrumentation , Asteraceae/classification , Gas Chromatography-Mass Spectrometry/methods
5.
Braz. J. Pharm. Sci. (Online) ; 58: e19233, 2022. tab, graf
Article in English | LILACS | ID: biblio-1374569

ABSTRACT

Abstract In the present study, the metabolite profiling of methanolic extract from aerial parts of Satureja khuzistanica Jamzad, as an endemic medicinal plant from Iran, was evaluated using HPLC-PDA-ESI. Then, the main compound from the extract was isolated and purified by using extensive chromatographic techniques. In addition, the structure of the isolated compounds was elucidated using 1D, 2D NMR, and MS spectrometry, upon which 22 compounds were identified. The antibacterial activity of diosmetin 7-rutinoside (6) and linarin (13) in combination with carvacrol as a major compound of the essential oil was tested against Pseudomonas aeruginosa and Staphylococcus aureus through disc diffusion and minimum inhibitory concentration methods. The results indicated that the linarin, when mixed with carvacrol as the main compounds in the essential oil of the plant, has a satisfactory activity against both Pseudomonas aeruginosa and Staphylococcus aureus with MIC values of 0.16 and 0.18 µg/mL, respectively. Further, the fractional inhibitory concentration (FIC) index indicated that this compound had synergism with carvacrol.


Subject(s)
Plants, Medicinal/anatomy & histology , Oils, Volatile/analysis , Lamiaceae/chemistry , Satureja/classification , Pseudomonas aeruginosa/isolation & purification , Spectrum Analysis/instrumentation , Microbial Sensitivity Tests/instrumentation , Chromatography, High Pressure Liquid/methods
6.
Braz. J. Pharm. Sci. (Online) ; 58: e18719, 2022. tab, graf
Article in English | LILACS | ID: biblio-1364412

ABSTRACT

Abstract The aim of present study was calculate the Minimum inhibitory concentrations (MICs) of silver nanoparticles and clotrimazole for Candida species and their interaction by the adaptation of standarized methods. The MICs values of clotrimazole were 9 E-04-3 E-03 ug/ml, 0.1-0.6 ug/ml, 3 E-03- 0.1 ug/ml and 3 E-03-0.3 ug/ml for Candida albicans susceptible to fluconazole, Candida albicans resistance to fluconazole, Candida krusei and Candida parapsilosis respectively. The MICs values of silver nanoparticles were 26.50- 53 ug/ml; 26.50-106 ug/ml; 106-212 ug/ ml and 26.50- 53 ug/ml for Candida albicans susceptible to fluconazole, Candida albicans resistance to fluconazole, Candida krusei and Candida parapsilosis respectively. Synergism between clotrimazole and silver nanoparticles was measured by checkerboard BMD (broth microdilution) test and shown only for C. albicans susceptible to fluconazole because the fractional inhibitory concentrations (FICs) values were 0.07 - 0.15 ug/ml. Indifference was shown for the other species tested because the FICs values were between 0.5 - 2- 3.06 ug/ml. The results suggest synergistic activity depending on the fungus species analysed, however we recommend the incorporation of others measurement methodologies to confirm our results. As for measurement methodologies of MICs of silver nanoparticles and clotrimazole international normative were respected to guarantee reproducible and comparable results.


Subject(s)
Candida/classification , Clotrimazole/analogs & derivatives , Nanoparticles/administration & dosage , Antifungal Agents/adverse effects , Microbial Sensitivity Tests/instrumentation , Fungi
7.
Braz. J. Pharm. Sci. (Online) ; 58: e19664, 2022. tab
Article in English | LILACS | ID: biblio-1394033

ABSTRACT

Abstract Neonatal sepsis continues to be a major cause of morbidity and mortality worldwide. Coagulase-negative staphylococci (CoNS), commonly found on the skin, being the main agents isolated. The aim of this study was to evaluate CoNS isolated from blood cultures of newborn (NB) infants. The study took place between 2014 and 2016/2017 in a tertiary hospital in southern Brazil. Using the VITEK 2 system (bioMérieux, Marcy l'Etoile, France), the microorganisms were identified and had their sensitivity profiles determined. The minimum inhibitory concentrations of linezolid, tigecycline, and vancomycin were also determined. The clinical parameters and mortality rates of NBs were evaluated. From January to December 2014, 176 CoNS isolates were obtained from 131 patients and from June 2016 to July 2017, 120 CoNS isolates were obtained from 79 patients. Staphylococcus epidermidis was most prevalent in both periods. Resistance rates increased between 2014 and 2016/2017, especially against ciprofloxacin (52.27% and 73.11%, p = 0.0004), erythromycin (51.40% and 68.07%, p = 0.0054), gentamicin (50.59% and 67.23%, p = 0.0052), and penicillin (71.3% and 99.17%, p = 0.0001), respectively. With 100% susceptibility to linezolid, tigecycline, and vancomycin in both periods and methodologies tested. In 2014, 53.44% of the NBs received antibiotic therapy, and of these, 77.14% used a catheter; in 2016/2017, these were 78.48% and 95.16%, respectively. Regarding laboratory tests, a hemogram was ineffective, since patients with sepsis presented normal reference values. In 2014 and 2016/17, 15.71% and 17.74% of the NBs died, respectively. S. epidermidis was the predominant microorganism, related to catheter use in most cases. The resistance rates have increased over time, demonstrating the importance of adopting control and prevention measures in this hospital. CoNS are responsible for a significant neonatal sepsis mortality rate in infants.


Subject(s)
Humans , Male , Female , Infant, Newborn , Staphylococcal Scalded Skin Syndrome/pathology , Infant, Newborn , Coagulase/adverse effects , Skin , Staphylococcus epidermidis/pathogenicity , Microbial Sensitivity Tests/instrumentation , Mortality , Sepsis/pathology , Blood Culture/classification , Blood Culture/instrumentation , Hospitals
8.
Braz. J. Pharm. Sci. (Online) ; 56: e18468, 2020. tab
Article in English | LILACS | ID: biblio-1249147

ABSTRACT

Origanum vulgare L. (OVEO) essential oil has been considered a candidate antimicrobial for use in food conservation systems. However, studies on the influence of concomitant variations of different food components or physicochemical parameters on the antibacterial properties of OVEO are scarce. This study assessed the influence of concomitant variations in amounts of proteins - PTN (4.0, 6.0 or 8.0 g/100 mL) and lipids - LIP (3.75, 5.0 or 6.25 g/100 mL) and pH values (5.0, 5.5 or 6.0) in cultivation medium on the inhibitory effects of OVEO against Escherichia coli (EC) and Salmonella Typhimurium (ST). Lowest minimum inhibitory concentration values of OVEO against EC and ST were observed in media with the highest LIP amounts regardless the PTN amount and pH value. In absorbance based microtiter plate assay (MPA), for both EC and ST, OVEO caused the lowest Grmax values in medium containing the highest LIP and PTN amounts and lowest pH value. Highest Grmax values for EC and ST were observed in medium containing the lowest LIP and PTN amount and highest pH value. Grmax values estimated from viable counts of EC and ST in tested media with OVEO confirmed bacterial growth behavior similar to that observed in MPA. Overall, the LIP amount in media was as the most influential factor to enhance the antibacterial effects of OVEO. These results indicate that the concomitant influence of LIP and PTN amounts and pH values on the antibacterial effects of OVEO should be considered for optimizing its antimicrobial efficacy in foods.


Subject(s)
Salmonella typhimurium/classification , Oils, Volatile/analysis , Origanum/classification , Escherichia coli/classification , Lipids/adverse effects , Proteins , Microbial Sensitivity Tests/instrumentation , Bacterial Growth , Efficacy , Food , Hydrogen-Ion Concentration
9.
Braz. J. Pharm. Sci. (Online) ; 56: e18309, 2020. tab
Article in English | LILACS | ID: biblio-1132055

ABSTRACT

The membrane-based efflux pump systems are recognized to have an important role in pathogenicity and drug resistance in Mycobacterium tuberculosis by the extrusion of toxic substrates and drugs from the inner bacillus. This study aimed to investigate the in vitro interaction of Verapamil (VP), an efflux pump inhibitor, with the classical first-line anti-tuberculosis drug isoniazid (INH) in resistant and susceptible M. tuberculosis clinical isolates. Seven multidrug-resistant (MDR), three INH monoresistant and four susceptible M. tuberculosis clinical isolates were tested for the INH and VP combination by modified Resazurin Microtiter Assay Plate (REMA). Fractional Inhibitory Concentration (FIC) and Modulation Factor (MF) were determined. The INH plus VP combination showed no significant change in the Minimum inhibitory concentration (MIC) values of INH (FIC≥ 0.5; MF=1 or 2).The use of VP in tuberculosis therapy should be managed carefully, considering the resistance caused by specific mutation in katG and inhA genes, in which the use of these EPIs may have no success. The use of EPIs as an adjunctive drug in the anti-tuberculosis therapy should be further investigated on a larger number of M. tuberculosis clinical isolates with different resistant profile.


Subject(s)
Verapamil/antagonists & inhibitors , Mycobacterium tuberculosis/isolation & purification , Antitubercular Agents , Bacillus/classification , Tuberculosis/pathology , In Vitro Techniques/methods , Drug Resistance , Pharmaceutical Preparations/analysis , Microbial Sensitivity Tests/instrumentation , Isoniazid/agonists
10.
ABCS health sci ; 44(2): 96-102, 11 out 2019. tab, graf
Article in English, Portuguese | LILACS | ID: biblio-1022342

ABSTRACT

INTRODUÇÃO: A automação laboratorial é cada vez mais utilizada em microbiologia, no entanto, poucos estudos avaliam desfechos clínicos em comparação aos métodos tradicionais. No Brasil, nenhum estudo com esse objetivo foi detectado. OBJETIVO: Analisar os impactos clínicos e microbiológicos após implantação de método fenotípico automatizado em um serviço de microbiologia. MÉTODOS: Realizamos estudo observacional e retrospectivo no laboratório de microbiologia referente a exame de hemocultura de pacientes da Unidade de Terapia Intensiva (UTI). Os dados foram coletados de pacientes internados entre janeiro/2014 a dezembro/2015. Analisou-se o tempo de internação, número de terapias empíricas, óbitos e dados relacionados ao isolamento microbiológico. A amostra foi obtida por conveniência. Para a comparação entre os desfechos foram empregados os testes t de Student e Qui-quadrado de Pearson. O programa empregado foi o Stata release, versão 11, sendo considerados significativos valores de p<0,05. RESULTADOS: Foram avaliados 472 pacientes. Não houve redução na prescrição empírica de antimicrobianos (54,7% vs 45,3%; p=0,33), tempo de internação na UTI (14,5 dias vs 15,8 dias p=0,78) e na taxa de óbitos (54,4% vs 45,6%; p=0,36). Similarmente, o perfil de agentes isolados em ambos os métodos não parece ser discrepante, no entanto, houve um aumento de 44,7% no número de isolados microbianos (76 vs 110) com melhor caracterização dos mesmos. CONCLUSÃO: A automação do laboratório de microbiologia não impactou no tempo de internação, mortalidade na UTI e no número de terapias empíricas. No entanto, a identificação e o isolamento de microrganismos melhoraram.


INTRODUCTION: Automation is increasingly used in microbiology laboratory, however, few studies assessed clinical outcomes compared to traditional methods. In Brazil, no studies with this objective were detected. OBJECTIVE: To analyze the clinical and microbiological impacts after implantation of an automated phenotypic method in a microbiology service. METHODS: Observational and retrospective study carried out on the microbiology laboratory involving blood culture test from intensive care unit (ICU) patients. Data were collected from hospitalized patients between January 2014 and December 2015. The length of hospitalization, number of empirical therapies, deaths and information related to microbiological isolation were analyzed. The sample was obtained by convenience. Pearson's Chisquare and Student's t-tests were used to compare outcomes. The program used was the Stata release, version 11, being considered significant values of p<0.05. RESULTS: A total of 472 patients were evaluated. There was no reduction in the empirical prescription of antimicrobials (54.7% vs 45.3%; p=0.33), ICU stay (14.5 days vs 15.8 days; p=0.78) and mortality (54.4% vs 45.6%; p=0.36). Similarly, profile of isolated agents in both methods did not appear to be discrepant, however, there was an increase of 44.7% in the number of microbial isolates (76 vs 110) and a better characterization of them. CONCLUSION: The microbiology laboratory automation did not modify the length of stay, ICU mortality and the number of empirical therapies. However, identification and isolation of microorganisms was improved.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Microbial Sensitivity Tests/instrumentation , Microbial Sensitivity Tests/methods , Automation, Laboratory/instrumentation , Automation, Laboratory/methods , Blood Culture/instrumentation , Blood Culture/methods , Microbiology/instrumentation
11.
Rev. biol. trop ; 67(1): 1-10, Jan.-Mar. 2019. graf
Article in English | LILACS | ID: biblio-1041889

ABSTRACT

Abstract Phyllomedusa azurea is a frog species well distributed geographically in South America, including Brazilian biomes as Pantanal and Cerrado. Compared with other anurans from the Phyllomedusinae family, there are few reports on the bioactive potential of skin-derived molecules from this species. In this perspective, the aim of the present study was to evaluate the in vitro antibacterial activity of skin secretion of P. azurea by detection of Minimum Inhibitory Concentration (MIC) of the growth of bacterial indicator strains and to determine if occurs a changing in the bacterial cell envelope permeability. The MIC determination was carried out by the microdilution plate method. The absorbance was measured and analyzed statistically using the t-test to compare two groups (0.05 % of significance). The impact of the crude extract on cell envelope permeability of Staphylococcus aureus ATCC 25923 was conducted by the crystal violet assay, and the absorbance was measured spectrophotometry followed by the calculation of the crystal violet uptake percentage. The specific MIC for S. aureus ATCC 25923 and Escherichia coli ATCC 25922 was 31.25 µg/mL, while for Bacillus subtilis ATCC 6633 was 125 µg/mL and Pseudomonas aeruginosa ATCC 27853 was 250 µg/mL. The treatment with crescent concentrations of frog skin secretion increased the crystal violet uptake by S. aureus ATCC 25923 cells, suggesting an action on the cell plasma membrane. The results demonstrated that the skin secretion of P. azurea presents antibacterial activity and merit further investigations to characterize the bioactive molecules.(AU)


Resumen P. azurea es una especie de rana bien distribuida geográficamente en América del Sur, que incluye biomas brasileños como Pantanal y Cerrado. En comparación con otros anuros de Phyllomedusinae, existen pocos informes sobre el potencial bioactivo de las moléculas derivadas de la piel de esta especie. En esta perspectiva, el objetivo del presente estudio fue evaluar la actividad antibacteriana in vitro de la secreción de la piel de P. azurea mediante la detección de la Concentración Inhibitoria Mínima (CIM) del crecimiento de cepas indicadoras bacterianas y determinar si ocurre un cambio en la permeabilidad de la envoltura celular bacteriana. La determinación de MIC se llevó a cabo mediante el método de la placa de microdilución. La absorbancia se midió y se analizó estadísticamente mediante la prueba t para comparar dos grupos (0.05 de significancia). El impacto del extracto crudo sobre la permeabilidad de la envoltura celular de Staphylococcus aureus ATCC 25923 se realizó mediante el ensayo de cristal violeta, y se midió la absorbancia mediante espectrofotometría seguida del cálculo del porcentaje de absorción de violeta cristal. La CIM específica para S. aureus ATCC 25923 y Escherichia coli ATCC 25922 fue 31.25 μg / ml, mientras que para Bacillus subtilis ATCC 6633 de 125 μg / ml y Pseudomonas aeruginosa ATCC 27853 de 250 μg / ml. El tratamiento con concentraciones crecientes de secreción de piel de rana aumentó la absorción de violeta cristal por las células de S. aureus ATCC 25923, sugiriendo una acción sobre la membrana plasmática de la célula. Los resultados demostraron que la secreción de la piel de P. azurea presenta actividad antibacteriana y amerita más investigaciones para caracterizar las moléculas bioactivas.(AU)


Subject(s)
Anura/microbiology , Microbial Sensitivity Tests/instrumentation , Ecosystem , Bodily Secretions , Brazil
12.
Braz. arch. biol. technol ; 62: e19180285, 2019. tab, graf
Article in English | LILACS | ID: biblio-1055377

ABSTRACT

Abstract Helicobacter pylori is a bacterium that reaches half of the world population and it's recognized as the main cause of chronic gastritis and peptic ulcer. In this study, we evaluated the anti-H. pylori, antioxidant and immunomodulatory activities of the methanolic (MeOH) extract of Eugenia uniflora leaves and chemical profile. Anti-H. pylori activity was evaluated by spectrophotometric broth microdilution technique by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), in addition to the evaluation of the effect on the urease enzyme. The antioxidant activity was evaluated by capturing O2 •-, HOCl e NO• radicals. The immunomodulatory effect was evaluated on the cytokines TNF-α, IL-6 and on nitric oxide through inhibition in LPS-stimulated macrophages. The chemical profile was performed by total phenolic, tannin and flavonoid contents and mass spectrometry analysis by ESI-FT-ICR MS. In the anti-H. pylori assay the extract showed MIC of 128 μg/mL, however it did not obtain MBC. The extract also showed ability to inhibit the urease enzyme about 20%. The antioxidant activity of the MeOH extract showed EC50 values of 29.77 µg/mL, 15.71 µg/mL and 442.10 µg/mL to O2 •-, HOCl and NO•, respectively. The extract also showed influence on the release of TNF-α, IL-6 and NO in LPS-stimulated macrophages, ranging from 39% to 97% inhibition. Flavonoids, phenylpropanoids, tannins, triterpenoids and carbohydrates were the major classes of compounds present in the MeOH extract as identified by (-)-ESI-FT-ICR MS. The results indicate important anti-H. pylori, antioxidant and immunomodulatory activities from Eugenia uniflora highlighting its importance in the prevention and treatment of diseases caused by H. pylori infection.


Subject(s)
Humans , Helicobacter pylori/drug effects , Eugenia/drug effects , Antioxidants , Peptic Ulcer/drug therapy , Microbial Sensitivity Tests/instrumentation , Immunomodulation , Gastritis/drug therapy
13.
Braz. J. Pharm. Sci. (Online) ; 54(1): e17229, 2018. tab, graf
Article in English | LILACS | ID: biblio-951909

ABSTRACT

ABSTRACT The present study evaluated the antibacterial and antibiofilm activity of carvacrol against Salmonella Typhimurium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined and the time-kill curve and scanning electron microscopy (SEM) were performed to evaluate antibacterial activity. Antibiofilm activity was evaluated by quantifying total biomass using crystal violet assay, and metabolic activity was determined using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The action of carvacrol against preformed biofilm on polypropylene and stainless steel was also evaluated by colony counting and SEM. The MIC and MBC was 312 µg mL-1. Carvacrol at MIC and 2 x MIC eliminated cells after 6 and 1 h of treatment, respectively, as exhibited in the time-kill curve. The greatest reduction in biofilm biomass and metabolic activity was 1,719 OD550 and 0,089 OD550 respectively, both at 4 x MIC of carvacrol. In carvacrol treated biofilms of S. Typhimurium on polypropylene, a reduction of 5.12 log was observed with 4 x MIC, while on stainless steel, carvacrol at 4 x MIC reduced bacterial counts by 5 log. The results showed that carvacrol exhibits antibacterial activity and can be used as an alternative for the control of S. Typhimurium biofilms.


Subject(s)
Salmonella typhimurium/immunology , Biofilms , Anti-Bacterial Agents/analysis , Microbial Sensitivity Tests/instrumentation
14.
Braz. J. Pharm. Sci. (Online) ; 54(2): e17149, 2018. tab, graf
Article in English | LILACS | ID: biblio-951928

ABSTRACT

ABSTRACT Griseofulvin (GF) and terbinafine (TF) are commonly used drugs to treat dermatophytosis, a fungal infection of the skin. Today there is an increase in drug resistance to these antifungals which highlight the need for alternative synergistic therapies. Minimum Inhibitory Concentration (MIC) of GF and TF were determined against fungi clinical isolates from local hospitals with values ranging 0.03-2.0 µg mL-1 and 0.24-4.0 µg mL-1, respectively. A checkboard test was used to determine the combination of GF:TF which could induce an additive effect against the fungi isolates Multidrug-resistant isolates showed susceptibility after treatment with 16:2 µg mL-1 GF:TF. An MTT assay further verified that GF and TF combinations have greater additive effect against pathological and multidrug-resistant isolates than antifungals alone. Herein we disclose GF:TF combinations that could constitute as a possible new anti-dermatophyte therapy.


Subject(s)
In Vitro Techniques/methods , Drug Combinations , Griseofulvin/analysis , Tinea/pathology , Microbial Sensitivity Tests/instrumentation , Dermatomycoses/classification , Arthrodermataceae/classification , Antifungal Agents/analysis
15.
São Paulo; s.n; s.n; nov. 2015. 105 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-834083

ABSTRACT

A incorporação de substâncias antimicrobianas, entre elas os óleos essenciais, em embalagens tem como objetivo minimizar a contaminação microbiana em alimentos. No entanto, essa utilização é limitada por critérios sensoriais, sendo necessário determinar a concentração mínima necessária para inibir o desenvolvimento de micro-organismos sem afetar sensorialmente as características do alimento. Assim, os objetivos dessa pesquisa foram: determinar a concentração inibitória mínima (CIM) de óleos essenciais (OE) para Listeria monocytogenes (LM); avaliar do efeito da combinação de óleos essenciais para a redução da população de LM; avaliar a combinação de compostos ativos presentes em óleos essenciais para a inibição de LM, Pseudomonas spp e Salmonella spp; avaliar in vitro e in situ a eficiência antimicrobiana do filme à base de alginato incorporado de compostos ativos presentes em óleos essenciais; determinar a disponibilidade dos compostos ativos incorporados ao filme pela determinação dos compostos fenólicos totais; caracterizar o filme frente às propriedades mecânicas e propriedades de barreira, e verificar a aceitação pelo consumidor, através da análise sensorial, de fatias de salame embaladas com o filme antimicrobiano. Constatou-se que a combinação de eugenol (0,01%) e limoneno (0,04%) apresentou um maior efeito para a redução da população de LM comparado ao uso individual desses compostos, confirmando, portanto, a existência de sinergismo entre esses dois compostos. Em relação à Pseudomonas spp, o sinergismo foi constatado quando as concentrações de eugenol (0,15%) e de limoneno (0,30%) foram utilizadas, no entanto, para Salmonella spp o mesmo efeito não foi observado. Em ensaios in vitro apesar do aumento na concentração de eugenol e limoneno incorporados à matriz do filme, não houve diferença significativa para os valores de zona de inibição antimicrobiana porém, em ensaios in situ, a utilização desse filme como embalagem primária promoveu a redução de 2 log UFC/g da população de LM até o 10º dia de análise permanecendo constante até o 30º dia o que não ocorreu com a combinação de eugenol (0,15%) e limoneno (0,3%). A quantificação dos compostos fenólicos totais nas amostras mostrou que há correlação entre o teor de compostos fenólicos extraídos da amostra do filme e o comportamento de LM. As propriedades mecânicas e de barreira do filme à base de alginato não foram significativamente afetadas pelas concentrações de eugenol e limoneno avaliadas neste estudo. O sabor, o aroma e a aparência das amostras de salame foram aceitos pelos provadores mostrando que o uso do filme à base de alginato incorporado com eugenol e limoneno é viável para a aplicação como embalagem antimicrobiana para o controle de L. monocytogenes em salame fatiado. Este resultado é considerado importante, pois em alimentos com atividade de água e valores de pH adequados à multiplicação desse patógeno e armazenados sob refrigeração, a temperatura é capaz de selecionar a microbiota presente no alimento, favorecendo a multiplicação de micro-organismos psicrotróficos, como L. monocytogenes


The incorporation of antimicrobial substances in packages aims at reducing food microbial contamination among which the phenolic compounds extract from plants have received special attention being natural and attending consumer demand. However, the use of these compounds is limited by sensory criteria and it is necessary to determine the minimum concentration required to inhibit the growth of microorganisms without affecting the sensory characteristics of the food. The aim of this research were: to determine the minimum inhibitory concentration (MIC) of essential oils (EO) for Listeria monocytogenes (LM); to evaluate effect of the combination of essential oils in order to reduce LM population; to evaluate the active compounds combination for the inhibition of LM, Pseudomonas spp, and Salmonella spp; to evaluate the antimicrobial efficiency in vitro and in situ of the alginate film incorporated with the active compounds; to determine the availability of the active compounds incorporated into the film for the determination of total phenolic compounds; to characterize the mechanical and barrier properties of the film, and to verify consumer acceptance of slices of salami packaged with the antimicrobial film. The combination of eugenol (0.01%) and limonene (0.04%) showed a greater effect for reducing LM population compared to the individual use of these compounds, confirming the existence of synergism between these two compounds. Regarding Pseudomonas spp, synergism was observed when the concentrations of eugenol (0.15%) and limonene (0.30%) were used, however, the same effect was not observed for Salmonella spp. In in vitro tests, despite of the increase in the concentration of limonene and eugenol incorporated in the film matrix, no significant difference for the antimicrobial inhibition zone values was observed. In in situ tests, the film containing eugenol (0.3%) and limonene (0.6%) promoted the reduction of 2 log CFU/g of LM population in sliced salami, while the combination of eugenol (0.15%) and limonene (0.3%) did not have the same effect. The quantification of the phenolic compounds in the film samples showed that there is correlation between the content of phenolic compounds extracted from the film sample and LM behavior. The mechanical properties of the barrier film and the alginate were not significantly affected by eugenol, and limonene concentrations evaluated in this study. The taste, flavor and appearance of the salami samples were accepted by the panel showing that the use of the alginate-based film incorporated with limonene and eugenol are feasible for use as antimicrobial packaging for the control of L. monocytogenes in sliced salami. This is an important result, because in food matrix with water activity and pH suitable for the pathogen growth, the storage under refrigerated condition is able to select the psycrothophic microorganisms, such as L. monocytogenes


Subject(s)
Alginates/analysis , Listeria monocytogenes/classification , Anti-Infective Agents/pharmacology , Pseudomonas/classification , Salmonella/classification , Oils, Volatile/pharmacology , Microbial Sensitivity Tests/instrumentation , Food Microbiology , Food Preservation , Listeria
16.
São Paulo; s.n; s.n; jul. 2013. 117 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-837019

ABSTRACT

As proteínas inibidoras de poligalacturonases (PGIPs) presentes na parede celular são capazes de limitar o potencial destrutivo da poligalacturonase (PG) fúngica e, assim, constituem um tipo importante dentre os diversos sistemas de defesa do tecido vegetal frente à infecção fúngica. No mamão, o ataque fitopatogênico é o principal causador de danos pós-colheita, e sua alta susceptibilidade pode estar relacionada com a baixa eficácia ou pouca abundância dos meios de defesa anti-fitopatogênica. Uma vez que isso pode estar relacionado com as PGIPs e nada se conhece sobre o papel dessas proteínas nesse fruto, o objetivo do trabalho foi clonar os genes das PGIPs de mamoeiro e definir seu padrão de expressão em diferentes órgãos e tecidos e ao longo do amadurecimento. Para tanto, foram identificadas no genoma do mamoeiro, a partir de critérios que definem a identidade de uma PGIP, duas prováveis sequências dentre 13 candidatas iniciais. Ambas foram clonadas a partir das sequências genômicas e de cDNA, sequenciadas e sua identidade confirmada, sendo denominadas Cppgip4 e Cppgip6. As análises de expressão relativa em diversos tecidos e idades fisiológicas do mamoeiro demonstraram que os dois genes apresentaram diminuição da expressão com o desenvolvimento dos frutos, sendo que com a polpa apresentou redução dos níveis de expressão relativa de Cppgip4 em até 18 vezes dos 30 dias pós-antese (DPA) ao 9 dias pós-colheita (DPC). Na casca também houve redução significativa da expressão com o desenvolvimento. Para a expressão absoluta, nos frutos, sementes, caules, raízes e folhas, o número de cópias de ambos os transcritos decresceu com o desenvolvimento, sendo cerca de cem mil vezes mais abundante para Cppgip6 que para Cppgip4. As tentativas de expressão de proteínas recombinantes em Pichia pastoris não geraram resultado positivo, provavelmente em virtude das condições ideais de indução ainda não terem sido estabelecidas corretamente para o ensaio. A atividade de PGIPs extraídas diretamente do tecido foi medida por análise de difusão em ágar empregando pectinase de Aspergillus niger e revelou uma tendência à diminuição da porcentagem de inibição à medida que os frutos se desenvolveram, em concordância com os resultados da análise por qPCR. O conjunto de resultados sugere que a expressão varia com o estádio de desenvolvimento do fruto e é tecido-específica, possivelmente em resposta à diferente susceptibilidade dos tecidos ao ataque fitopatogênico, indicando que menores níveis de transcritos e atividade no amadurecimento, período de maior susceptibilidade, poderiam sinalizar para a regulação do processo degradativo marcando o início da senescência


Polygalacturonase inhibiting proteins (PGIPs) present in plant cell walls are able to inhibit the destructive action of fungal polygalacturonase (PG). In this way, they constitute an important type of plant defense system against fungal infections. In papaya fruit, the pathogenic attack is the main cause of post harvesting loss, and its high susceptibility may be related to the low efficiency or low abundance of anti-phytopathogenic defense. Since this fact could be related to PGIPs expression and little is known about the response of these proteins in the fruit, the aim of the present work was to clone the genes of PGIPs papaya fruit and set their expression pattern in different organs and tissues throughout fruit ripening. Thus, two probable PGIP sequences among 13 initial candidates were identified in the papaya genome by using specific criteria. Both sequences were cloned from cDNA and genomic samples, sequenced and confirmed its identity, and then being named Cppgip4 and Cppgip6. Analysis of relative expression in various tissues at different physiological stages demonstrated that both genes were down regulated during fruit development. The relative expression levels of Cppgip4 in papaya pulp was reduced by 18 times from the 30 days post-anthesis (DPA) to the 9 days post-harvest (DPH). Similarly, gene expression in papaya peel was significant down regulated during fruit development. Absolute expression analysis revealed gene expressions in the fruit pulp, seed, stem, root and leaf were also down regulated within development. Moreover, Cppgip6 gene expression was a hundred thousand times more abundant than Cppgip4. The recombinant protein expression in Pichia pastoris did not result positive, probably because of the ideal conditions of induction have not been properly established the yet. The activity of PGIPs extracted directly from the tissue was measured by the agar diffusion assay using pectinase from Aspergillus niger and showed decrease of inhibition during fruit developed in accordance with the results of the qPCR analysis. Based on the results it is possible to suggest the expression of these genes varies temporally with the developmental stage of the fruit and is tissue-specific, possibly in response to the different susceptibility of tissues to pathogenic attack. In addition, the lowest levels of PGIP expression were achieved at the fruit ripening, when the susceptibility to fungal infection is high and could signal for regulating the degradation process characterized by the onset of senescence


Subject(s)
Polygalacturonase , Polygalacturonase/analysis , Microbial Sensitivity Tests/instrumentation , Cloning, Organism/methods , Carica/classification , Pichia , Aspergillus niger , Gene Expression , Fungal Capsules , Infections , Molecular Biology/methods
17.
Article in English | IMSEAR | ID: sea-159937

ABSTRACT

Background: In view of the diagnostic difficulties associated with sputum- negative pulmonary TB (PTB), we aimed at exploring if bronchoalveolar lavage (BAL) samples can be subjected to smear- microscopy and rapid mycobacterial culture (by Mycobacterial Growth Indicator Tube (MGIT) method) to achieve improved diagnosis of this condition. Methods: Patients presenting with clinico-radiological features suggestive of pulmonary tuberculosis and whose sputum smears were negative for acid- fast bacilli (AFB) or who could not expectorate sputum were prospectively enrolled in this study. BAL samples collected from them were subjected to smear- microscopy for AFB and micro-MGIT culture. BAL samples were also inoculated on Lowenstein- Jensen (LJ) slants. Results: A total of 105 patients (74 males) were recruited in the study, with a mean (±SD) age of 51 (± 15) years. The diagnosis of PTB was made in 52 patients on the basis of clinico- radiological presentation, with or without microbiological confirmation. Thirty- four patients (65.4 %) had microbiologically confirmed PTB. Of them, AFB were detected in 12 BAL samples, while culture- positivity was noted in 24 and 27 patients by the LJ and MGIT methods respectively. Intertest agreement between the LJ and MGIT methods was found to be significant (ê= 0.655; p= <0.001). However, the mean time to positivity was significantly lower for the MGIT method than for the LJ method (p= <0.001). Conclusion: Examination of BAL samples by smear- microscopy and micro-MGIT culture can, therefore, provide a rapid and definitive diagnosis of PTB in sputum- negative patients.


Subject(s)
Adolescent , Adult , Aged , Bronchoalveolar Lavage/analysis , Bronchoalveolar Lavage/microbiology , Bronchoscopy/methods , Culture Techniques , Humans , Middle Aged , Microbial Sensitivity Tests/instrumentation , Microbial Sensitivity Tests/methods , Microscopy/methods , Mycobacterium tuberculosis/growth & development , Sputum/microbiology , Tuberculosis, Pulmonary/diagnosis , Young Adult
18.
Rev. bras. plantas med ; 15(3): 373-379, 2013. graf, tab
Article in Portuguese | LILACS | ID: lil-684154

ABSTRACT

Os óleos essenciais são metabólitos secundários vegetais com propriedades biológicas diferenciadas, dentre elas a atividade contra microrganismos, sendo de importante interesse para a indústria de alimentos. As concentrações mínimas inibitórias (CMI) desses óleos para diversas bactérias devem ser determinadas. As CMI variam de acordo com o óleo utilizado, dos compostos majoritários e do tipo de bactéria. Nesta pesquisa, os óleos essenciais das plantas Satureja montana L., Cymbopogon nardus L. e Citrus limonia Osbeck foram caracterizados quimicamente e determinada a CMI sobre as bactérias Staphylococcus aureus ATCC 2592 e Escherichia coli ATCC 25922. A CMI para todos os óleos contra E. coli foi 1,5%, já S. aureus foi sensível a partir da concentração de 5,0% do óleo essencial de S. montana e 1,5% foi a CMI obtida quando utilizados os óleos essenciais das outras espécies estudadas. Na constituição química os componentes majoritários para os óleos de S. montana, C. narduse C. limonia Osbeck foram respectivamente o timol, citronelal e limoneno.


Essential oils are plant secondary metabolites with different biological properties, such as action against microorganisms, being majorly important to the food industry. The minimal inhibitory concentrations (CMI) of these oils for several bacteria should be determined. CMIs vary according to the oil used, the major compounds and the phenotypic and genotypic characteristics of the bacteria. In this research, the essential oils of the plants Satureja montana L., Cymbopogon nardus L. and Citrus limonia Osbeck were chemically characterized, and CMI was determined for the Staphylococcus aureus ATCC 2592 and Escherichia coli ATCC 25922 bacteria. The CMI for all oils against E. coli was at 1.5%, and S. aureus was sensitive to the 5.0% concentration of the S. montana oil, and the CMI achieved was equivalent to 1.5% when essential oils of other plants were used. In the chemical composition, the major components for the S. montana, C. nardus and C.limonia Osbeck oils were thymol, citronellal and limonene, respectively.


Subject(s)
Staphylococcus aureus/isolation & purification , Oils, Volatile/chemistry , Escherichia coli/isolation & purification , Microbial Sensitivity Tests/instrumentation , Anti-Bacterial Agents/analysis
20.
Annals of Laboratory Medicine ; : 264-269, 2012.
Article in English | WPRIM | ID: wpr-47753

ABSTRACT

BACKGROUND: The purpose of this study was to compare the turnaround time for liquid culturing and primary anti-tuberculous drug susceptibility testing (DST) performed using the mycobacteria growth indicator tube (MGIT) 960 system (Becton Dickinson, USA) with that for conventional culturing and DST (by the absolute concentration method) performed using solid culture medium and to determine the concordance rates of DST results obtained using these 2 methods. METHODS: In this retrospective study, we compared the turnaround times from receiving the request for mycobacterial culture to reporting the DST results before and after the introduction of the MGIT 960 system. Further, we determined the concordance between DST results for isoniazid and rifampin for Mycobacterium tuberculosis isolates obtained using the MGIT 960 system and the absolute concentration method, which was conducted at the Korean Institute of Tuberculosis. RESULTS: The overall turnaround time for mycobacterial culturing and DST was 27 days for liquid culturing and DST using the MGIT 960 system versus approximately 70 days for culturing on solid medium and DST with the absolute concentration method (P<0.001). There was a good concordance between findings of DST obtained with the 2 methods (97.2%, kappa coefficient=0.855 for rifampin; and 95.6%, kappa coefficient=0.864 for isoniazid), for 1,083 clinical isolates. CONCLUSIONS: The automated MGIT 960 system for culturing and DST of M. tuberculosis was successfully introduced in a hospital laboratory setting in Korea with significant shortening of the turnaround time.


Subject(s)
Humans , Antitubercular Agents/pharmacology , Automation , Drug Resistance, Multiple, Bacterial/drug effects , Isoniazid/pharmacology , Microbial Sensitivity Tests/instrumentation , Mycobacterium tuberculosis/drug effects , Retrospective Studies , Rifampin/pharmacology , Time Factors , Tuberculosis/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL